
Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning

Kaleb Ben Naveed1, Zhiqian Qiao2 and John M. Dolan3

Abstract— Planning safe trajectories under uncertain and
dynamic conditions makes the autonomous driving problem
significantly complex. Current heuristic-based algorithms such
as the slot-based method rely heavily on hand-engineered
parameters and are restricted to specific scenarios. Supervised
learning methods such as Imitation Learning lack general-
ization and safety guarantees. To address these problems
and to ensure a robust framework, we propose a Robust-
Hierarchical Reinforcement Learning (HRL) framework for
learning autonomous driving policies. We adapt a state-of-
the-art algorithm, Hierarchical Double Deep Q-learning (h-
DDQN), and make the framework robust by (1) constituting
the decision of selecting driving maneuver as a high-level
option; (2) for the lower-level controller, outputting waypoint
trajectories to track with a Proportional-Integral-Derivative
(PID) controller instead of direct acceleration/steering actions;
and (3) using a Long-Short-Term-Memory (LSTM) layer in
the network to alleviate the effects of observation noise and
dynamic driving behaviors. Moreover, to improve the sample ef-
ficiency, we use Hybrid Reward Mechanism and Reward-Driven
Exploration. Results from the high-fidelity CARLA simulator
while simulating different interactive lane change scenarios
indicate that the proposed framework reduces convergence
time, generates smoother trajectories, and can better handle
dynamic surroundings and noisy observations as compared to
other traditional RL approaches.

Index Terms— Trajectory Planning, Hierarchical Deep Rein-
forcement Learning, Double Deep Q-Learning, PID controller.

I. INTRODUCTION

Planning safe trajectories for autonomous vehicles is a
challenging problem. In reality, this problem is particularly
difficult because of the maneuver planning complexities,
stochastic surroundings, and noisy perception system of the
car. While performing trajectory planning, the autonomous
vehicle has to plan different maneuvers, which might include
lane following, waiting, changing lanes, and traversing inter-
sections.

Most existing trajectory planners rely on either traditional
heuristic-based methods or machine learning methods. Some
of the state-of-the-art heuristic-based methods include the
slot-based method [1] and Time-To-Collision (TTC) [2].
The slot-based method selects a target slot through rules-
enumeration from the set of feasible slots. On the other hand,
TTC calculates the time to collision based on estimating
the target cars’ state information. Both methods require
hand-engineered parameters and thus lack optimal solutions.

1Student of Electronic and Information Engineering, The
Hong Kong Polytechnic University, Hong Kong, China.
kaleb-ben.naveed@connect.polyu.hk

2Electrical and Computer Engineering, Carnegie Mellon University
3 The Robotics Institute, Carnegie Mellon University

Fig. 1. Three-layer Hierarchical Structure has two high-level options in the
first manuever decision making layer and a low-level trajectory planner for
each high-level option, which generates waypoint trajectories. Proportional-
Integral-Derivative (PID) Controller is used to follow the planned trajectory.

Moreover, these methods are not generalizable to more
complex scenarios. The other way of planning trajectories
is through machine learning methods. The supervised learn-
ing method called Imitation Learning [3] has shown some
promising results. However, this method might not generalize
well to complex conditions and does not guarantee stability
and an optimal solution [4].

An alternative approach to the rule-based planners and
supervised learning methods is Reinforcement Learning (RL)
[5]. The RL framework works on the principle of maximizing
reward for a particular action at a given state. Existing
RL works have shown promising results for an ego-car to
learn policies for multiple scenarios. However, traditional
RL methods for autonomous driving are less sample-efficient
and less stable, especially for tasks with multiple sub-goals.
In comparison to traditional RL, Hierarchical Reinforcement
Learning (HRL) [6] allows a model to learn the policies for
multiple sub-goals, which allows the policies learned to be
reused for any other scenario. Furthermore, HRL has shown
a faster convergence rate, which decreases training time for
the model to learn an optimal policy. In this paper, we
propose Robust-HRL as an improvement to the existing HRL
framework for learning an autonomous driving policy for the
interactive lane change scenario. This paper’s contributions
towards making the HRL framework for trajectory planning
more robust are:

• High-level decision making: The higher level of the
HRL framework is responsible for selecting a maneuver

2021 IEEE Intelligent Transportation Systems Conference (ITSC)
Indianapolis, USA. September 19-21, 2021

978-1-7281-9142-3/21/$31.00 ©2021 IEEE 601

option, which could be either lane follow/wait or lane
change;

• Planning smooth waypoint trajectories: Based on the
high-level option, the low-level planner generates
variable-length waypoint trajectories which are tracked
with a PID controller;

• History of state observations: We use an LSTM layer
with history of state observations to compensate for ob-
servation noise and to improve learning with interactive
driving conditions;

• Improving sample efficiency: We use Hybrid Reward
Mechanism [14] and Reward-Driven Exploration in
order to improve sample efficiency and convergence
time.

II. RELATED WORK
A. Non-RL-based Trajectory and Behavior Planning

Previous non–RL methods include classical planners,
heuristic-based methods, supervised learning methods, and
statistical methods.

Rapidly Exploring Random Trees (RRTs) is a state-of-
the-art sampling-based classical planner [7]. RRTs generate
trajectories by constructing a tree-like structure through
the space. RRTs are proven good for environments with
obstacles, but might not converge to the optimal solution. [8]
addressed this problem by introducing RRT*, which showed
optimal convergence and shorter routes. The methods, which
work on rule-based enumeration, include Time-To-Collision
(TTC) [2] and the slot-based method [1]. TTC estimates
arrival time for the vehicle and thus the time to collision.
On the other hand, the slot-based method checks whether
it is safe to merge into the target-lane or to traverse the
intersection based on the slots present in the target-lane and
state information of the target cars. These heuristic rule-
based methods are time-consuming to develop and also lack
generalization to every possible scenario.

Alternative approaches include decision making through
supervised learning and statistical methods. Imitation learn-
ing requires a considerable amount of data from expert
drivers in order to generate the autonomous driving polices.
[9] used a Deep Imitation Learning framework to learn a
driving policy for urban scenarios through offline learn-
ing. They also added a safety controller module which in-
creased the safety while testing. Another method, UrbanFlow
[10], uses supervised learning for trajectory prediction. This
method consists of a complete pipeline from collecting raw
data to the final processing of trajectories. They used the
UrbanFlow pipeline for LSTM-based trajectory prediction
based on human drivers’ driving behavior, which allowed
the ego-car to make better decisions. For statistical meth-
ods, [11] proposed a behavior prediction and multipolicy
decision-making framework for autonomous vehicles using
a changepoint-based method. They sample policies of the
target cars from the distribution, which is estimated using
Bayesian changepoint detection on state history, and then
create a likelihood of actions for the target cars. Based on
the prediction and by modelling interactions between ego-car

and target cars, they select a policy for the ego-car which
yields highest reward.

All these approaches are either computationally expensive,
not generalizable to all scenarios, or do not promise an
optimal solution. On the other hand, RL has shown promising
results handling these problems.

B. RL-Based Trajectory and Behavior Planning

By extending the framework of RL, [6] proposed the
idea of hierarchical Deep Q-Network (DQN), in which the
action-value functions were integrated to operate at two
levels of abstraction, and learned a policy over metagoals
and low-level actions. Later improvements to Hierarchical
RL were proposed by [12] and [13]. In the autonomous
vehicles domain, [14] proposed an HRL-based method for
behavior planning with high-level options and low-level
actions. Furthermore, in order to improve sample efficiency
and yield better results, the state-attention model, hybrid
reward mechanism, and hierarchical prioritized experience
replay were introduced. Another work which made use of
hierarchical abstraction and used the scenario of lane-change
was proposed by [15]. They used RL for high-level decision
making and optimization or rule-based methods for a low-
level controller. Moreover, they considered prior knowledge,
low-level controller parameters, and constraints for training
which improve convergence time.

Another approach that has produced significant results
in decision making through trajectory prediction is Inverse
Reinforcement Learning (IRL). IRL works on the prin-
ciple of extracting the reward structure by observing an
optimal trajectory of an expert agent. By building on the
IRL approach, [16] proposed a framework for predicting
off-road vehicle trajectories by integrating kinematics and
environment to recover the reward structure.

Another RL approach for decision making is multi-agent
RL. [17] proposed a safe, multi-agent RL framework to
improve the functional safety of the ego-car in multi-
agent settings by using policy gradient iteration without the
Markovian assumption and Hierarchical Temporal abstrac-
tion through desires (learned) and trajectory planning with
hard constraints (not learned).

In this paper, we propose Robust-HRL, which is an
improvement on the existing HRL framework for learning
autonomous driving policy. We learn policy for both a high-
level decision making network and a low-level trajectory
planner network. Moreover, we facilitate learning in stochas-
tic conditions by using the history of state observations
and LSTM layers in the network for training. Lastly, in
order to improve sample efficiency, we use Reward-Driven
Exploration and Hybrid Reward Mechanism [14].

III. PRELIMINARIES

A. Double Deep Q-Learning

Double Q-Learning is an extension of the state-of-the-art
Deep Q-Learning algorithm. The Q-Learning algorithm in
RL is used to find an optimal action-selection policy π using

602

Fig. 2. The Hierarchical RL network consists of a high-level Options
Network and low-level Planner Network. In both networks, a Long Short
Term Memory (LSTM) layer is used with a fixed number of previous steps
nsteps = 3 for the history vector input. The Tanh activation function is
used in the LSTM layer. The output of the Options network, which is the
goal, is concatenated with the history vector for the input to the planner
network. A fully connected (FC) layer is used as a last layer for each
network. Within the FC, a ReLU activation function is used except for the
last layer, which uses a Linear activation function in order to generate
both of the networks’ final values.

a Q function, which is used to maximize the action-value
function Q∗(s, a).

Deep Q-Learning uses neural networks to update network
parameter θ through minimizing the loss function between
predicted action-value Q and the target action-value Y Q.
Deep Q-Learning uses the same values to select and evaluate
an action, which results in overestimation.

Double Deep Q-Learning [18] solves the problem of
overestimation by revising the target action updates from
another target Q′ network with different weights, which is
shown in Equation 1.

Y Q
t = Rt+1 + γQ(St+1, argmax

a
Q′(St+1, a|θt)|θ

′

t) (1)

B. Hierarchical Reinforcement Learning

HRL [6] learns a policy at multiple levels as meta-
controller Q1 generates the sub-goal g for the following
steps and a controller Q2 outputs the action a based on the
sub-goal selected until the next sub-goal is generated by the
meta-controller.

Y Q1

t =

t+1+N∑
t′=t+1

Rt′ + γmax
g

(St+1+N , g|θ1t) (2)

Y Q2

t = Rt+1 + γmax
a

Q(St+1, a|θ2t , g) (3)

IV. METHODOLOGY

A. Hierarchical structure and decision making

In the proposed Robust-HRL framework we use a three-
layer structure for decision making and trajectory planning
with two fully connected networks: one for high-level deci-
sion making and the other for low-level trajectory planning.
The topmost level is responsible for selecting the high-level
maneuver option from lane follow/wait or lane change op-
tions. Once the high-level selection is made, the information
is passed down to the low-level planner, which generates
waypoint trajectories based on learned policy. After that a
PID controller is used to track trajectories. The division

Fig. 3. Variable-length sub-trajectories for lane follow are generated based
on different traffic density and conditions. Green objects with letter E are
the ego-car and objects with letter T are target vehicles whose features are
included in the state space. Blue objects represent other vehicles whose
features are not included in the state space.

through HRL into two high-level options (lane follow/wait
and lane change) helps the ego-car to learn a policy for both
high-level options and for the low-level trajectory planners.
The details of the hierarchical network structure can be seen
in Figure 2.

B. Trajectory Planning and waypoint generation

Trajectory planning is implemented at the second level
of the hierarchical framework. Once the high-level option
is selected, the low-level trajectory planner selects the final
waypoint from the discrete waypoint choices. The selection
is based on the ego-car’s state information through the
epsilon-greedy strategy. All final waypoints are generated
at the center of the lane, which prevents lane invasions
and ensures stability. Once the final waypoint is selected,
the ego-car’s target speed is calculated using the maxi-
mum acceleration/deceleration constraints in order to ensure
a smooth sub-trajectory. Then the target speed and final
waypoint values are given to the PID controller, which in
turn generates longitudinal and lateral control. These sub-
trajectories altogether form a complete trajectory constituting
lane follow, wait and lane change maneuvers. The detailed
working of the Robust-HRL, including training details, is
shown in Algorithm 1. The details of the decision-making
strategy for low-level planner choices can be found in the
sections below:

1) Lane Follow/Wait: Once the ego-car selects the lane
follow/wait option, the low-level trajectory planner is used
to plan the path. The low-level planner generates variable-
length trajectories based on different driving scenarios. In
figure 3, three scenarios are considered. In scenario A, the
ego-car selects the more distant final waypoint, which lets it
plan a sub-trajectory for a longer time horizon. In scenario
B, an intermediate-length sub-trajectory is generated given
denser traffic conditions as compared to scenario A. In
scenario C, the ego-car decelerates to a slower speed profile
trajectory or chooses to wait in the ego-lane in order for
traffic to clear. For all trajectories, the final waypoint and
target speed information is given to a PID controller for
smooth tracking.

603

Fig. 4. Different speed profile sub-trajectories are generated for the ego-
car (E) for a lane change maneuver based on different traffic densities and
ego-car speed profiles.

2) Lane Change: Once the decision to perform a lane
change is made, the waypoint in the target-lane is selected
using the ego-car’s state information through the epsilon-
greedy strategy. Each different final waypoint shown in
Figure 4 represents a different velocity profile the ego-car
may choose to make a lane change. This ensures smoothness
and stability while planning for the lane change maneuver.
The green point is selected if the ego-car is required to do
a faster lane change because of the higher speed in the ego-
lane. The yellow point is for the normal velocity profile
trajectory. The red point selection helps the ego-car to take
sharper turns, which might be needed when the velocity
of the ego-car is lower or it was in the wait option. The
RL selects one point between the three points through the
low-level planner network under the lane change high-level
option.

C. History of state observations

We use the history of state observations as an input
for both LSTM layers in our model to compensate for
observation noise in the state space and to facilitate learning
in interactive and stochastic driving conditions. In order
to sample experiences from replay memory, we use the
approach of bootstrapped random updates proposed by [19].
This strategy randomly samples an n-step sequence from the
batch of episodes drawn from experience replay and then
trains the neural network. The hierarchical network structure
details can be found in Figure 2.

D. Reward-Driven Exploration

One of the most common strategies for training in rein-
forcement learning is the epsilon-greedy strategy. This strat-
egy works on the principle of the explore-exploit dilemma,
in which the agent’s tendency to explore for the optimal
policy decays with time. In our training routine, instead of
periodically decaying the ε we use average total reward to
adjust it. When the average reward is higher for a period of
episodes, we decrease ε to favor exploitation and vice versa.
This reduces convergence time and helps the ego-car explore
more while training in difficult scenarios.

V. EXPERIMENTS

In this section, we apply the proposed Robust-HRL al-
gorithm to the scenario shown in Figure 5 in the CARLA
simulator [20]. In order to validate the effectiveness of our
proposed approach, we compare Robust-HRL with previous
state-of-the-art RL approaches and a heuristic-based method
[1]. We also stress-tested the state space by introducing
Gaussian noise in the observation vector.

Algorithm 1 Robust-HRL
1: Initialize options, target options, planner, and target

planner network Qo, Qo′ , Qp, and Qp′
with weights θo,

θo
′
, θp, and θp

′
respectively.

2: Construct empty replay buffer B with max memory
length lb.

3: for 1 to E training episodes do
4: Initialize episode reward re and reward Deque ret with

length 2t, where t ∈ Z+

5: Get Initial State s.
6: Initialize history vector ht containing 3 time steps.
7: while s is not terminal state do
8: ot = argmaxo Q(ht) based on the ε − greedy,

where ot is the option.
9: pt = argmaxp Q(ht, ot) based on the ε− greedy,

where pt is planner waypoint choice.
10: Get the target waypoint wt based on goal ot and

planner pt selection.
11: Calculate the target velocity value v based on wt.
12: Get throttle and steer values from PID controller

based on v and wt.
13: Perform the step for sub-trajectory in simulation

and get st+1, rot+1, rpt+1, where ro is the option
reward and rp is the planner reward.

14: Deque st+1 to ht to get ht+1.
15: Store transition T into B: T =

{st, ht, ot, pt, rot+1, r
p
t+1, st+1, ht+1}.

16: re ← rot+1 + rpt+1

17: end while
18: Append re to ret

19: if
0∑
t
2

ret <

t
2∑
t
ret then

20: ε = γ × ε, γ ∈ [0, 1]
21: else
22: ε = ε / γ, γ ∈ [0, 1]
23: end if
24: Train with Buffer RelayBuffer(e).
25: end for

A. Scenario and Experiment Setup

The overview of the scenario can be seen in Figure 5.
We considered the interactive lane change scenario for con-
ducting experiments and testing our algorithm. We simulated
three scenarios: High, Moderate, and Low traffic flow. In
order to add complexity, we randomly blocked the ego-lane
in some training episodes.

In addition, in order to simulate real-world driving behav-
iors, we used CARLA’s Traffic Manager module to randomly
generate target cars’ (red cars in Figure 5) behavior. Using
Traffic Manager, all target cars were assigned to Autopilot
status, which uses a rule-based method and PID controller
to control vehicles. Under Autopilot, all target vehicles react
to each other and the ego-car, which makes the environment
interactive. Moreover, using Traffic Manager, we randomly
assigned the status of dangerous to some target cars by giving

604

Fig. 5. A screenshot of one of the CARLA simulator scenarios is shown, where the ego-car is the blue car in the white rectangle. In this scenario, the
ego-lane is randomly blocked and the ego-car is required to perform a lane change.

them higher velocity and less distance to the front vehicle.

B. State Space

For all the scenarios, we selected three nearest target-
cars to be included in the state observation vector. The
information about target cars is included in the tuple t ∈
{t1, t2, t3}, where t1, t2, and t3 refer to target 1, target 2,
and target 3 car, respectively. The state space consists of 14
parameters and is given by tuple s:

s = [ve, laneide, vt, dt, dtr, laneidt]

• ve = Ego-car velocity
• laneide = Lane-ID for the ego-car
• vt = Velocities of the target vehicles
• dt = Ego-car distance to the target cars
• dtr = Ratio of distance to safety threshold
• laneidt = Lane-ID of the obstacle car and target vehicles

C. Reward Structure

We use Hybrid Reward Mechanism [14] for our reward
structure, which divides total reward into task reward and
sub-goal reward. We did not use an unsmoothness penalty,
as smooth trajectories are ensured by the PID controller. The
overall reward can be categorized into two parts:

1) For each step:
• Time penalty: −σ1
• Regular time step reward for progressing towards final

destination: σ2
• Unsafe penalty: exp−(dtr), where t ∈ {t1, t2, t3}
2) For the termination conditions:
• Collision penalty: −σ4
• Success reward σ5
• Time out penalty, which results from excessive waiting:
−σ6

D. Results and Discussion

In order to evaluate the effectiveness of our proposed
algorithm, Robust-HRL, we compared it with heuristic-based
methods and existing state-of-the-art RL approaches. We
evaluated the performance of the following methods: 1)
Slot-based method, 2) Vanilla DQN with 6 discrete actions,
3) Hierarchical Double Deep Q-Learning (hDDQN), and
4) Robust-HRL. Performance of the slot-based method and
Robust-HRL was also recorded with and without Gaussian
noise. We compared the performance of different approaches
using these metrics:

Fig. 6. Training results of different approaches

• Total Average Reward: The summation of high-level
option reward and the low-level planner choice reward
divided by the total number of test episodes;

• Lane Invasion rate: The average rate of lane invasion
recorded in the test episodes. Lane invasion occurs when
the ego-car crosses the ego-lane’s boundaries while in
the follow lane state;

• Collision rate: The percentage of test episodes in which
collision occurs;

• Success rate: The percentage of test episodes in which
the ego-car is able to complete its trajectory from
starting point to the end point without collision.

The detailed results are shown in Table I. The training re-
sults for RL-based approaches are shown in the Figure 6. For
the proposed methodology, we were able to get the optimal
policy after 2000 episodes and the policy evaluation after
training consisted of 200 test episodes. The Robust-HRL
recorded a 97.5% success rate without noisy observations
and a 95.5% success rate with a noisy state space.

Direct comparisons with non-hierarchical approaches sug-
gest that the presence of sub-goals through the use of HRL
decreased the overall convergence time and also recorded
the best success rates. The heuristic-based rules enumeration
approach recorded the lowest success rate, as rules, which
are specific to particular scenarios and conditions, could
not generalize well to interactive and stochastic driving
conditions. One of the reasons the slot-based method had
low reward was the unnecessary waiting of the ego-car in
the ego-lane for lane change. On the other hand, for RL
approaches, Table I shows that Vanilla DDQN only achieved
a success rate of 83.5% in comparison to the hierarchical

605

TABLE I
COMPARISON OF RESULTS OBTAINED FROM DIFFERENT PLANNING ALGORITHMS

Method Gaussian Noise Total Average Reward Lane Invasion Rate % Collision Rate % Success Rate %
Slot-based with PID No 2679.40 0 17.5 82.5
Slot-based with PID Yes 2150.25 0 27.0 73.0

Vanilla DDQN No 2750.41 19.4 16.5 83.5
hDDQN No 3117.82 15.9 12.0 88.0

Robust-HRL w/o LSTM Yes 3531.24 0 9.0 91.0
Robust-HRL Yes 3728.00 0 4.5 95.5
Robust-HRL No 3761.44 0 2.5 97.5

approaches, which were able to achieve a minimum 88.0%
success rate with no noise added to the state space and
with direct low-level control. Lastly, the improved version
of hDDQn, Robust-HRL, not only significantly improved the
convergence time, as shown in Figure 6, but also recorded
the lowest collision rate among all approaches.

The results and evaluation of final policies show that using
waypoint-based trajectories with a PID Controller instead of
direct throttle, steering, and brake ensured smooth tracking
and increased safety. As the waypoints were generated in the
middle of the road by the CARLA waypoint API, the ego-
car recorded almost zero lane invasions while tracking the
selected waypoints using the PID controller.

In order to evaluate the performance with incomplete
observations, we added Gaussian noise to the state space. We
trained both slot-based and Robust-HRL with and without
noise. This helped us to make direct comparisons between
the two approaches. As noise was added to the slot-based
method, performance significantly decreased. For RL-based
approaches, the results in Table I show that the collision rate
was brought down to 4.5% from 9.0% with the inclusion
of the history of state observations and LSTM layers in
the network. Although improved, the collision rate was not
able to drop significantly after 2000 episodes of training,
as LSTMs require more time to train because they are
computationally expensive. But overall, adding an LSTM
layer to the network yielded best results with Gaussian noise.

VI. CONCLUSION AND FUTURE WORK

In this paper, we improved the existing HRL framework
for autonomous driving by proposing Robust-HRL. The
proposed structure involves high-level maneuver decision
making and low-level waypoint trajectory generation. In
order to improve sample efficiency, we used Hybrid Reward
Mechanism and Reward-Driven Exploration. Results show
that Robust-HRL improves the existing HRL framework
for autonomous driving. Future work includes combining
policies learned from different scenarios and maneuvers such
as intersections and ramp merging through HRL as sub-goals.

ACKNOWLEDGMENT

The authors would like to thank the Robotics Institute
Summer Scholars Program (RISS), Carnegie Mellon Univer-
sity, and The Industrial Center, The Hong Kong Polytechnic
University, Hong Kong for providing resources for research.
I, Kaleb, credit this work to my late father, Naveed Joseph,
for his unmatched support throughout RISS.

REFERENCES

[1] C. R. Baker and J. M. Dolan, “Traffic interaction in the urban
challenge: Putting boss on its best behavior,” in 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2008, pp.
1752–1758.

[2] D. N. Lee, “A theory of visual control of braking based on information
about time-to-collision,” Perception, vol. 5, no. 4, pp. 437–459, 1976.

[3] P. Cai, Y. Sun, Y. Chen, and M. Liu, “Vision-based trajectory planning
via imitation learning for autonomous vehicles,” in 2019 IEEE Intelli-
gent Transportation Systems Conference (ITSC), 2019, pp. 2736–2742.

[4] T. Osa, J. Pajarinen, G. Neumann, J. Bagnell, P. Abbeel, and J. Peters,
“An algorithmic perspective on imitation learning,” Foundations and
Trends in Robotics, vol. 7, no. 1-2, pp. 1–179, Mar. 2018.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 1998.

[6] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” in Advances in Neural Information Process-
ing Systems 29, 2016, pp. 3675–3683.

[7] S. LaValle, J. Kuffner, and B. Donaldetal, “Rapidly-exploring random
trees: Progress and prospects,” in Algorithmic and computational
robotics: new directions, 2001, pp. 293–308.

[8] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[9] J. Chen, B. Yuan, and M. Tomizuka, “Deep imitation learning for
autonomous driving in generic urban scenarios with enhanced safety,”
2019.

[10] Z. Qiao, J. Zhao, Z. Tyree, P. Mudalige, J. Schneider, and J. M. Dolan,
“Human driver behavior prediction based on urbanflow,” 2019.

[11] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multi-
policy decision-making for autonomous driving via changepoint-based
behavior prediction: Theory and experiment,” Auton. Robots, vol. 41,
no. 6, p. 1367–1382, Aug. 2017.

[12] T. G. Dietterich, “The maxq method for hierarchical reinforcement
learning.” ICML, vol. 98, pp. 1–179, 1998.

[13] N. K. Jong and P. Stone, “Hierarchical model-based reinforcement
learning: R-max+ maxq,” in Proceedings of the 25th international
conference on Machine learning. ACM, pp. 1–179, 2008.

[14] Z. Qiao, Z. Tyree, P. Mudalige, J. Schneider, and J. Dolan, “Hierarchi-
cal reinforcement learning method for autonomous vehicle behavior
planning,” Nov. 2019.

[15] M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, “Tactical
decision making for lane changing with deep reinforcement learning,”
12 2017.

[16] Y. Zhang, W. Wang, R. Bonatti, D. Maturana, and S. Scherer,
“Integrating kinematics and environment context into deep inverse
reinforcement learning for predicting off-road vehicle trajectories,”
CoRR, vol. abs/1810.07225, 2018.

[17] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent,
reinforcement learning for autonomous driving,” 2016.

[18] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” 2015.

[19] M. J. Hausknecht and P. Stone, “Deep recurrent q-learning for
partially observable mdps,” CoRR, vol. abs/1507.06527, 2015.
[Online]. Available: http://arxiv.org/abs/1507.06527

[20] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and
V. Koltun, “CARLA: an open urban driving simulator,”
CoRR, vol. abs/1711.03938, 2017. [Online]. Available:
http://arxiv.org/abs/1711.03938

606

