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Abstract— In the missions related to search and rescue
operations, reconnaissance Unmanned Aerial Vehicles (UAV)
are used to effectively search the given environment map and
return information about the detected objects with limited
flight time. This involves solving the NP-hard problem of
maintaining balance between the tasks of fast exploration
and data acquisition. Most of the existing work focuses on
optimizing only one of these factors. In this paper, we propose
Prioritized-FUEL, which is built on top of the FUEL (Fast UAV
Exploration) algorithm, a frontier-based exploration technique.
The proposed hierarchical structure maintains balance between
fast coverage and data acquisition through the introduction
of two high-level planner options: Exploration planning and
Informative planning. In order to facilitate decision making for
informative planner, we modify Frontier Information Structure
(FIS) in the original FUEL paper to incorporate information
about objects of interest. Moreover, we introduce Frontier
Priority Que (FPQ) to store information about all the frontiers,
which have a higher probability of the presence of the objects of
interest near them. The results from the experiments in the light
UAV simulation environment show that the proposed method
resulted in almost 2 times faster data acquisition as compared
to the original FUEL algorithm.

Index Terms— Search and Coverage, Informative Path Plan-
ning, Fast Exploration

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are widely used for the
purpose of data acquisition tasks. Some of the examples of
these tasks include victim search in rescue operations [1],
fault inspection for infrastructure [2], and water body explo-
ration for ecosystem management [3]. The main dilemma for
UAVs in these operations is maintaining a balance between
the tasks of fast exploration and information gathering. This
is specifically important in a scenario of search and rescue,
where the UAV does not only has to explore the region faster
but also has to periodically pause exploration to focus on
potential interesting areas where a victim could be present.

Some of the work [4][5] proposed for the task of optimal
and rapid exploration have shown great results in the real
world settings but do not consider information gain. On the
other hand, some of the work [6][7] proposed on informative
path planning or uncertainty reduction, which have shown
promising results by maximizing information gain during
exploration tasks, lack fast coverage guarantees. Thus most
of the existing work either focuses on rapid exploration or
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Fig. 1. The Prioritized-FUEL (Fast UAV Exploration) proposes a hierar-
chical structure with two high-levels options: Exploration planning for faster
coverage and Informative planning for data acquisition. High-level option
of Informative planning uses Frontier Priority Que (FPQ) in addition to
Frontier Information Structure (FIS) for decision making. At lower level,
3-step planner is used for trajectory generation. Both high-level options use
same low-level 3-step planner. The only difference is the input to 3-step
planner.

information gain, which limits their ability to provide optimal
solutions in reconnaissance operations.

In order to solve this problem, we propose, Prioritized-
FUEL, which is inspired from FUEL (Fast UAV Exploration)
algorithm. The proposed method add the ability in existent
FUEL framework to balance exploration and exploitation
for information gain by using hierarchical structure, which
contains two high-level planning options: Exploration plan-
ning for faster coverage and informative planning for data
acquisition. The High-level option of exploration planning
is responsible for the task of fast coverage of the search
space, while the high-level option of informative planning
is responsible for the task of information gathering of the
detected objects. The selection of the high-level option is
made based on the contents of Frontier Information Structure
(FIS) and the proposed Frontier Priority Que (FPQ). FIS
contains essential information about the search space and
frontiers. We modify the original structure of FIS introduced
in the FUEL algorithm [8] according to our decision making
requirements. Details about modification can be found in
Section III and Section IV.

The High-level option of Exploration planning only uses



FIS; however, the Informative planning option uses both
FIS and FPQ for decision making and planning stage. The
overall structure can be seen in Figure 1. The proposed
FPQ stores information about the frontiers, which have an
overlap with the bounding box of the detected objects. After
the high-level planner option is selected, a 3-step planner
is used for generating minimum-time trajectories. The three
steps include creating optimal global paths by posing the
problem as the Travelling Salesman Problem (TSP), refining
local viewpoints for maximum coverage, and generating
minimum-time B-spline trajectories which are safe, obstacle-
aware, and dynamically feasible.

The main contributions of this paper can be summarised
as follows:

• The hierarchical structure, which ensures balance be-
tween fast coverage and data acquisition through high-
level options of Exploration planning and Informative
planning;

• The Frontiers Priority Que (FPQ) that facilitates deci-
sion making for high-level planner options by storing
information about the frontiers, which have an overlap
with detected objects bounding box.

The remainder of the paper is organized as follows:
Section II gives a detailed overview of the related work done
in the scope of exploration planning and informative path
planning (IPP). Section III overviews system and prelimi-
naries. Section IV describes the proposed methodology in
detail. Section V evaluates the proposed methodology, lists
down preliminary results and comments on future work and,
lastly, section VI concludes the paper.

II. RELATED WORK
The area of exploring and mapping unknown environ-

ments through mobile robots has received considerable at-
tention in the recent past. Some of the state of the art ap-
proaches for mapping and exploration include frontier based
approaches, information-theoretic approaches and adaptive
sampling based approaches.

Frontier based approaches [9] for exploration are geo-
metric in nature and explore the region by travelling to
the boundaries between unknown and known regions. These
boundaries are called frontiers. According to the original
approach, during the exploration task, the closest frontier
is chosen greedily as the next frontier to visit. There are a
number of improvements made on this method. Instead of
greedily selecting the closest frontier, [4] selects the next
frontier that minimizes the velocity change to ensure max-
imum exploration speed. [10] introduced a method, which
generated shorter exploration trajectories, by amalgamating
a frontier based approach with local vector field strategy.
In order to solve the problem of optimal coverage and fast
exploration, [8] proposed the FUEL (Fast UAV Exploration)
algorithm. This method proposed the Frontier Information
Structure (FIS), which contains important information about
the search space and is updated incrementally as exploration
continues. By using FIS, they proposed a hierarchical 3-step
planner for trajectory generation. The three steps are finding

global coverage paths, refining the local set of viewpoints,
and generating minimum-time B-spline trajectories. This
approach resulted in much faster exploration of the search
area but did not prioritize information gain for the objects of
interest, thus limiting its use for search and rescue operations.

Another approach, Adaptive sampling, requires random
sampling of the search space to create viewpoints for explo-
ration planning. [11] proposed an algorithm called Adaptive
Search Space Coverage Path Planner (ASSCP) to generate
a set of viewpoints by performing adaptive sampling that
directs research towards areas with low accuracy and low
coverage. [12] presented a new RRT*-inspired algorithm,
which continuously expanded the single tree of candidate
trajectories and refined intermediate paths. This method en-
sured global coverage and path utility function maximization.
Some work involving a team of robots has also been ex-
plored. [13] proposed a method, using an adaptive sampling
based approach, exploiting a team of Autonomous Underwa-
ter vehicles (AUVs) to explore the region. In this method,
overall search space was partitioned in the regions close to
each given AUV using voronoi diagrams and each robot runs
adaptive sampling within its partition using map entropy of
the environment. The environment used in this method has
communication constraints and requires vehicles to initiate
data sharing after some time. [14] further improved the
partitioning procedure of search space by proposing voronoi
partitioning which considers newly discovered obstacles and
also updates regions continuously to improve load balancing
between robots. The sampling-based approaches have shown
state of the art results but they are computationally expensive
which limits their usage for real world applications.

An alternative approach to sampling-based and frontier-
based approaches include Information-Theoretic Planning.
These methods normally optimize an information theoretic
measure for exploration. [15] used a map entropy measure to
select the next frontier to visit in a Frontier-based approach.
[6] proposed method for information-theoretic planning ap-
proach, which chooses a trajectory from a set of global and
local trajectories. Then they use gradient-based optimization
to refine the chosen trajectory to maximize the Cauchy-
Schwarz quadratic mutual information (CSQMI) objective.
[16] proposed a method for target search problem which
combines informative planning and obstacle awareness.They
used layered optimization approach using Bayesian Op-
timization (BO) that balances the exploration-exploitation
trade off between information gain, altitude dependent sensor
performance, Field of View (FOV) and target re-observation.
Another approach proposed by [7] solved the problem of
exploration and informative planning by posing the problem
as a correlated orienteering problem and travelling salesman
problem. The proposed method provided anytime solutions
in adaptive scenarios and also used a multiresolution sensor
to gather target information.

In this paper, our approach is based on the work of [8]
and add the ability in the structure to prioritize information
gain for the detected objects of interest while maintaining a
fast exploration rate. We propose Prioritized-FUEL, which



TABLE I
FRONTIER INFORMATION STRUCTURE OF THE CLUSTER

Data Description
Celli Frontier cells that belong to the cluster

Cellavg,i Average position of the cluster
BCi Bounding box of the cluster
BIj Bounding box of the object of interest

Probdetect,j Probability of the Detected Object
V Pi Viewpoints around the cluster
Costi Connection costs to other clusters

either selects a high-level exploration planner or informative
planner based on information contained in Frontier Infor-
mation Structure (FIS) and Frontier Priority Que (FPQ).
Afterwards, both high level planners use common 3-step low-
level planner to generate minimum-time trajectories.

III. PRELIMINARIES AND SYSTEM OVERVIEW

A. Frontier Information Structure

In frontier-based exploration [9], frontiers are defined
as known-free voxel cells adjacent to the unknown cells.
Clusters are defined as known-free voxel cells combined
together. The method proposed by [8] introduced Frontier
Information Structure (FIS) which provides richer and more
organized information about the search space.

Whenever a new frontier Fri is detected, all the relevant
information about that particular cluster is stored in the FIS
using the cylindrical coordinate system. Table 1 summaries
the data contained in the FIS. In our method, for the task
of informative planning, we also add information about
the object of interest to the FIS Structure. This includes
the bounding box BIj and the Probability of detection
Probdetect,j of the jth detected object. These two entries
are used for decision making and will be explained later in
the next section. When the map is updated, the information
about the updated region is fetched and the bounding box
BBupdated is drawn around it. Afterwards it is checked if
there is any overlap between the updated region bounding
box BBupdated and cluster bounding box BCi. Similar
to FUEL paper [8], for searching and clustering of new
frontiers, we use region growing algorithm and then use
Principal Component Analysis (PCA) to split each large
cluster recursively in order to ensure robust decision making
as large clusters do not help in characterizing different
unknown regions.

B. Viewpoint Generation and Inter Frontier Cost Update

In our work, we use the methods proposed by [8] and [9]
for the generation of viewpoints and for inter-frontier cost
update. When a cluster Fri is created, the rich number of
viewpoints V Pi = {xi,1, xi,2, ..., xi,ni

} are generated so that
the viewpoint with the maximum coverage can be selected
through optimization. For each viewpoint, the information
about the sampled point Pi, in cylindrical coordinate system,
and its yaw angle ψ is stored i.e. xi,j = (Pi,j , ψi,j). In addi-
tion to generating viewpoints, we also compute costs between
frontier clusters. The connection cost is calculated as time

lower bound tlb(xk1,j1 , xk2,j2) between two viewpoints of
clusters. The formula for calculating time lower

Algorithm 1 Prioritized FUEL
1: Initialize Frontier Information Structure FIS and Fron-

tier Priority Que FPQ.
2: while Not whole region explored do
3: Search for new frontiers fri
4: Generate Viewpoints and inter frontier cost using

time-lower bounds eq.1
5: if BCi ∩BIj then
6: if Probdetect,j > ε) then
7: Append fri to FPQ
8: while FPQ 6= ∅ do
9: InformativeP lanner() // Information gath-

ering
10: end while
11: end if
12: else
13: ExplorationP lanning() // faster coverage
14: end if
15: end while

bound is given in equation 1, where P (pk1,j1 , pk2,j2) de-
notes collision free path between pk1,j1 and pk2,j2 , and vmax

and ψmax are velocity and yaw angle limits respectively. The
collision free path is searched through A∗ algorithm.

tlb(xk1,j1 , xk2,j2) = max
[ length(P (pk1,j1 , pk2,j2))

vmax
,

min(|ψk1,j1 − ψk2,j2 |, 2π − |ψk1,j1 − ψk2,j2 |)
ψmax

]
(1)

IV. METHODOLOGY

In the proposed Prioritized-FUEL, we develop a hier-
archical structure with two high-level options: Exploration
planning and Informative planning. The overall structure is
shown in Figure 1. The exploration planner is responsible for
generating paths which result in faster coverage of the search
area while informative path planner generates information-
theoretic paths for gathering information about the detected
objects. Both exploration and informative planners plan
paths in three steps, which is similar to the original FUEL
paper [8]. The detailed working of the Prioritized-FUEL is
described in Algorithm 1 and explained below.

A. Detected Object Information and Frontier Priority Que

When new frontiers are searched, the information about
all the clusters is maintained in the FIS. For the purpose
of informative path planning, we also keep the information
about detected objects, if any, in the FIS structure. According
to the Table 1, we keep track of the bounding box BIj and
probability of the confidence of detection Probdetect,j of the
detected object.

If and when the object is detected, the bounding box
BIj is drawn around it. Then precise checks are made



for all clusters and a list of all those clusters is returned
whose bounding box BCi intersects with the detected object
bounding box. Afterwards, the probability of confidence of
the detected object is checked and if it is greater than ε, then
that cluster is added into the Frontier Priority Que (FPQ).
Then the latter check is made to avoid the presence of false
positives in detection.

B. Exploration vs Information theoretic Planning

Based on the status of the FPQ, different planners are
activated accordingly. The only difference between informa-
tive planner and exploration planner is that in the former
some of the clusters are given higher priority based on
the possibility of the presence of an object of interest,
while exploration planner does not prioritize any frontier
but creates a minimum-time trajectory between any set of
candidate clusters. The two different cases are mentioned
here for further elaboration.

1) FPQ contains at least one cluster: If FPQ contains
at least one cluster, the high-level option of exploration
planning will pause and an informative planning option
will be activated. In this case, clusters present in the FPQ
are given higher priority and global paths are created to
cover those clusters first. During this time, the UAV focuses
on gathering data about the detected objects rather than
exploring new areas. This might decrease the overall search
time but ensures faster detection of the objects of interest,
which can save lives in search and rescue operations. Here
for data gathering, instead of circling around the object as in
[7], we purely rely on local viewpoint refinement to select
viewpoints which give maximum information of the object
while not wasting energy circling around the object. The
description of the working of the 3-step planner is given in
the next subsection.

2) FPQ contains no cluster: If FPQ contains no cluster,
then an exploration planner is chosen. Under the exploration
planner, minimum-time trajectories are generated through all
active clusters. This happens incrementally as new clusters
are made along the search path. The purpose of the explo-
ration planner is to ensure fast coverage of the search area.
The detailed steps involved in generating minimum-time
trajectories through a 3-step motion planner are mentioned
in the next section.

C. 3-Step Planner

The 3-step planner is adopted from the original FUEL
algorithm structure [8] and some modifications are made
to incorporate our structure into it . The low-level planning
procedure for both the high-level exploration planning option
and informative path planning option is the same. The only
difference is that during informative path planning, only
selected or prioritized clusters are considered, while explo-
ration planner considers all active clusters. The overall low-
level 3-step planner includes Global Path Planning, Local
Viewpoint refinement, and minimum-time B-spline trajectory
generation. The overall structure can be shown in Figure 2.

1) Global Path Planning: Global planner creates a global
path through the planner by posing the problem as the
Asymmetric Travelling Salesman Problem, which creates
an open-loop tour starting from the current viewpoint of

Fig. 2. The 3-step planner include Global Path Planning, Local Viewpoint
Refinement and Minimum-time B-spline Trajectory Generation

cluster Ci and passing to all clusters. The cost from the
current viewpoint x0 to the xk cluster can be evaluated
using equation 2. Here time-lower bound tlb(x0, xk,1) is used
which was calculated and stored in FIS when frontiers were
detected.

TSPcost(x0, xk) = tlb(x0, xk,1) + wc · cc(xk,1),

where, k ∈ {1, 2, 3, ...Ncluster} (2)

In equation 2, cc(xk,1) is used as motion consistency cost
which eliminates inconsistency by penalizing large changes
in flight conditions. This inconsistency might rise due to
several paths having similar time-lower bound.

2) Local Viewpoint Refinement: Here in this second step,
the global path is improved based on the different viewpoints
which were computed earlier. In original classical frontier-
based approach, while calculating the global path, only a sin-
gle viewpoint from each cluster is considered, which might
not provide optimal collective coverage. For local viewpoint
refinement, we create a graph of nodes from the current
viewpoint x0 to all viewpoints V Pi. In our method, we
consider all active clusters and use the notation Nat to refer
to them. After connecting nodes between clusters through
directed edge, Dijkstra algorithm is used to search for the
optimal local tour by minimizing the cost LTcost(x0, xNat)
shown in equation 3. This approach is similar to some of the
other proposed methods [8], [5], and [17].

LTcost(x0, xNat
) = tlb(x0, x1,j1) + wc · cc(x1,j1),

+ tlb(xNat,jNat
, xNat+1,1) +

Nat−1∑
k=1

tlb(xk,jk , xk+1,jk+1
)

(3)

3) B-spline Trajectory generation: For generating
minimum-time B-spline trajectory, we use the method de-
veloped by [8] and [18]. The trajectory planner generates



smooth, safe, and dynamically feasible B-spline trajectories,
and also optimizes all the parameters for the B-spline, which
result in minimum-time trajectories.

The quad-rotor used during experiments is considered
to be flat, so thus flat outputs include x ∈ (p, ψ) where

Fig. 3. Here the UAV is shown ready for exploring the area. The light
blue point cloud represents occupied region and colourful boundaries around
occupied region represents frontier clusters. The red rectangle represents
search area specified. The bounding box BIj represents the bouding box
around the object of interest. The grey shadows are the obstacles present in
the environment.

p ∈ (x, y, z). Thus the output can be shown as Xc,b =
{xc,0, xc,1, ..., xc,Nb

}, where xc,i = (pc,i, ψc,i) are the Nb+1
are control points in pd degree uniform B-spline. The knot
number represents a number of control points used with a
curve degree. The knot span here is referred to as ∆tb. The
overall optimization problem can be written as equation 4
and we suggest the reader to refer to work of [8] and [18]
for more details.

arg min
Xc,b,∆tb

fs + wtT + λcfc + λd(fv + fa) + λbsfbs (4)

Here in this equation, fs is the elastic band smoothness
cost, Rs is the penalty matrix and fc, fv , fa are penalties
to ensure safe and dynamic feasibility and T is the total
trajectory time. The detailed equations can be found in [8]
and [18].

V. EXPERIMENTS

A. Scenario and Experiment Setup

In this section, we test the proposed Prioritized-FUEL
algorithm in light simulator. The purpose of this experiment
is to test the validity of the idea and its preliminary perfor-
mance. The screenshot from the simulator is shown in Figure
3. The red boundary specifies search area, which needs to be
explored. The black coloured bounding boxes BIj represent
bounding boxes which are drawn around objects of interest
when detected. The grey color shadows represent unknown
obstacles. Initially, UAV does not have any information about
the presence of objects of interest or obstacles.

In our work, we assume that we have a perfect perception
system, so that we can focus on improving the planning part
of the system. This assumption helps us with two important

pieces of information. Firstly, the system knows the exact
position of the object of interest so a perfect bounding box
BIj can be drawn around it, but UAV does not have any
clue about the position of the object of interest at the start
of the exploration process. It only comes to know about the
presence of the object of interest when the bounding box

Fig. 4. The trajectory of the UAV is shown after fully exploring the region.
The light blue point cloud represents the known region. objects with label
”1” are objects of interest. Objects with label ”2” are obstacles.

BIj of the object of interest intersects with the bounding
box BCi of the frontier cluster. Secondly, we assume that
Probdetect,j is always greater than ε, which is one of the
requirements for informative planning as shown in algorithm
1. In experiments, with a focus on both perception and
planning, bounding box BIj of the object of interest and
Probdetect,j would change as detection is carried out using
some detection models [19], which might cause instability
in the execution of planning routines. But in our system,
this information is stable and reliable as we assume perfect
perception system.

B. Results and Discussion

In order to evaluate the effectiveness of our proposed
algorithm, Prioritized-FUEL, we compared it with the FUEL
algorithm using the mentioned metrics over sample size of
10 experiments for each method:

• Data Acquisition Time: Time spent on exploring fron-
tier clusters, whose bounding box BCi have an overlap
with the bounding box of the object of interest BIj ,
once object of interest is detected;

• Total Exploration Time: Total time spent exploring the
whole region.

The detailed results are shown in Table II. In our given
simulation environment, Prioritized-FUEL was able to out-
perform the FUEL algorithm in the data acquisition part by
focusing on exploring objects of interest first if detected,
while keeping total exploration time almost the same.

As shown in Table II, the original FUEL algorithm spends
on average 4.31 seconds on exploring the frontiers near
objects of interest once the object is detected. While the
proposed Prioritized-FUEL algorithm spends on average 2.38
seconds on exploring the frontiers near objects of interest.



TABLE II
COMPARISON OF FUEL AND PRIORITIZED-FUEL

Method Data Acquisition Time (sec) Total Exploration Time (sec)
Avg Std Min Max Avg Std Min Max

FUEL [8] 4.31 1.38 1.79 9.00 55.50 2.99 49.21 59.43
Prioritized-FUEL 2.28 0.80 1.78 4.21 56.60 3.60 48.87 61.21

Fig. 5. The overall sequence of exploration is shown from one of the experiments from frames 1 to 8.

This is because in the original FUEL algorithm, UAV con-
siders all frontiers as the same and generates minimum-time
trajectories between them. This results in faster exploration
of the environment. While in the Prioritized-FUEL algorithm,
frontier clusters whose bounding box BCi overlap with the
object of interest BIj are given higher priority and are
added into Frontier Priority Que (FPQ). Thus UAV explores
the high priority frontiers first by generating minimum-time
trajectories between them, before exploring other normal
frontiers.

Moreover it is shown in Table II that the total exploration
time is not much affected. This is mainly because even while
planning informative paths for data acquisition, minimum-
time trajectories are generated and viewpoints are adjusted
accordingly using Local Viewpoint refinement to maximize
coverage. This shows that Prioritized-FUEL not only guar-
antees faster data acquisition but also faster exploration.

The sequence of the exploration from one of the exper-
iments can be seen in Figure 5. The UAV can be seen to
focus on objects of interest in frames 3 to 5 once it detects
the first object of interest (cicle) in frame 2. This can also be
seen in frame 7 when the second object of interest (circle) is
detected by checking the overlap between the bounding box
of the cluster and of the circle. The final map is shown in
Figure 4.

C. Future Work

The Proposed structure Prioritized-FUEL (Fast UAV Ex-
ploration) ensures a balance between faster coverage and
informative planning. There are several more components
which can be added to the structure to make it more robust.
This includes altitude-aware data acquisition, multi-UAV

search and further testing in high fidelity simulations such
as unreal engine and AirSim simulator.

Considering altitude while gathering information can help
reduce uncertainty in sensor measurements. Obstacle-aware
Adaptive Path Planning (OA-IPP) [12] incorporates altitude
in it and shows that altitude-dependent sensor performance
can be incorporated into cost or objective function. Moreover,
Multi-UAV Search can help reduce overall search time by
dividing search effort between multiple UAVs. One of the
approaches famously used in the literature to divide the
whole search region into partitions is voronoi partitions. One
of the approaches proposed by [14] improved the partitioning
procedure of search space by proposing voronoi partitioning
which considers newly discovered obstacles and also updates
regions continuously to improve load balancing between
robots.

VI. CONCLUSION

In this paper, we proposed Prioritized-FUEL (Fast UAV
Exploration) in order to ensure balance between fast explo-
ration and data acquisition during reconnaissance operations.
The hierarchical structure provides two high-level options:
Exploration planning for faster coverage and Informative
planning for data acquisition. In order to facilitate decision
making for informative planner we modify Frontier Infor-
mation Structure in the original FUEL paper to incorporate
information about objects of interest. Moreover, we introduce
Frontier Priority Que (FPQ) to store information about all the
frontiers, which have a higher probability of the presence
of the objects of interest near them. We test the proposed
framework in a light UAV simulator and show that the
prioritized-FUEL algorithm decreases the time to explore



objects’ interest by almost 40% as compared to the original
FUEL algorithm while keeping total exploration time of the
search space almost the same. In future, we want to test and
compare the algorithms in the AirSim simulator with the
scenario of open sea reconnaissance operations.
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